4. Given the reaction:

$$A + B \rightarrow AB$$

The table below shows student data obtained about the rate of reaction when the concentration of solution A is kept constant and the concentration of solution B is changed by adding H_2O . Based on the data, the student should conclude that the

Trial	Volume of Solution A	$\begin{array}{c} \text{Volume of} \\ \text{Solution } B \end{array}$	Volume of H ₂ O Added	Reaction Time
1	10 mL	10 mL	OmL	2.8 sec
2	10 mL	5 mL	5 mL	4.9 sec
3	10 mL	3 mL	7 mL	10.4 sec

- A) concentration has no effect on the reaction rate
- B) reaction rate increased when H2O was added
- C) reaction rate increased as solution B was diluted
- D) reaction rate decreased as solution B was diluted
- After being ignited in a Bunsen burner flame, a piece of magnesium ribbon burns brightly, giving off heat and light. In this situation, the Bunsen burner flame provides
 - A) ionization energy
 - B) activation energy
 - C) heat of reaction
 - D) heat of vaporization
- An increase in the surface area of reactants in a heterogeneous reaction will result in
 - A) a decrease in the rate of the reaction
 - B) an increase in the rate of the reaction
 - C) a decrease in the heat of reaction
 - D) an increase in the heat of reaction
- 7. At 20.°C, a 1.2-gram sample of Mg ribbon reacts rapidly with 10.0 milliliters of 1.0 M HC1(aq). Which change in conditions would have caused the reaction to proceed more slowly?
 - A) increasing the initial temperature to 25°C
 - B) decreasing the concentration of HCl(aq) to 0.1 M
 - C) using 1.2 g of powdered Mg
 - D) using 2.4 g of Mg ribbon

Given the balanced equation representing a reaction:

$$Fe(s) + 2HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$$

This reaction occurs more quickly when powdered iron is used instead of a single piece of iron of the same mass because the powdered iron

- A) acts as a better catalyst than the single piece of iron
- B) absorbs less energy than the single piece of
- C) has a greater surface area than the single piece of iron
- D) is more metallic than the single piece of iron

9. Each of four test tubes contains a different concentration of HCI(aq) at 25°C. A 1-gram cube of Zn is added to each test tube. In which test tube is the reaction occurring at the fastest rate?

- As the concentration of reacting particles increases, the rate of reaction generally
 - A) decreases
- B) increases
- C) remains the same
- 11. Which change would most likely increase the rate of a chemical reaction?
 - A) decreasing a reactant's concentration
 - B) decreasing a reactant's surface area
 - C) cooling the reaction mixture
 - D) adding a catalyst to the reaction mixture
- 12. Which statement best describes how a catalyst increases the rate of a reaction?
 - A) The catalyst provides an alternate reaction pathway with a higher activation energy.
 - B) The catalyst provides an alternate reaction pathway with a lower activation energy.
 - The catalyst provides the same reaction pathway with a higher activation energy.
 - The catalyst provides the same reaction pathway with a lower activation energy.
- If the pressure on gaseous reactants is increased, the rate of reaction is increased because there is an increase in the
 - A) activation energy B) volume
 - C) concentration
- D) heat of reaction

- 14. A 1.0-gram piece of zinc reacts with 5 milliliters of HCl(aq). Which of these conditions of concentration and temperature would produce the greatest rate of reaction?
 - A) 1.0 M HCl(aq) at 20.°C
 - B) 1.0 M HCl(aq) at 40.°C
 - C) 2.0 M HCl(aq) at 20.°C
 - D) 2.0 M HCl(aq) at 40.°C
- In a biochemical reaction, an enzyme acts as a catalyst, causing the
 - A) activation energy of the reaction to decrease
 - B) potential energy of the reactants to decrease
 - C) kinetic energy of the reactants to increase
 - D) heat of reaction to increase
- 16. Given the reaction:

$$A_2(g) + B_2(g) \leftrightarrow 2AB(g) + heat$$

An increase in the concentration of A2(g) will

- A) decrease the production of AB(g)
- B) decrease the frequency of collisions between A2(g) and B2(g)
- C) increase the production of B2(g)
- D) increase the frequency of collisions between A2(g) and B2(g)
- A reaction is most likely to occur when reactant particles collide with
 - A) proper energy, only
 - B) proper orientation, only
 - C) both proper energy and proper orientation
 - D) neither proper energy nor proper orientation
- 18. Given the reaction:

$$A + B \rightarrow C + D$$

The reaction will most likely occur at the greater rate if A and B represent

- A) nonpolar molecular compounds in the solid phase
- B) ionic compounds in the solid phase
- C) solutions of nonpolar molecular compound
- D) solutions of ionic compounds